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Abstract. The present study focuses on electronic correlation effects on magnetic energy, the spin-spin
correlation function of an octahedron cluster in the (3↑, 3↓) electronic configuration threaded by a magnetic
field. Some other spin configurations are also discussed and various field directions are considered. An
accurate diagonalisation technique has been used to solve the Hubbard Hamiltonian. A result is analysed
on a linear energy stabilisation at low magnetic flux. Moreover, two types of antiferromagnetic transition
versus the flux occurring for a correlation term larger than a critical one have been observed, i.e. the
likelihood of a charge excitation before the antiferromagnetic transition. Finally, a comparison between
the results obtained from the exact diagonalisation and the Gutzwiller method has been carried out, leading
to a suggested modification of the Gutzwiller approach in order to improve it.

PACS. 36.40.-c Atomic and molecular clusters – 36.40.Cg Electronic and magnetic properties of clusters
– 36.20.Kd Electronic structure and spectra

1 Introduction

In the last few years, the electronic response of small ag-
gregates threaded by a magnetic flux has received much
attention. Interest in the subject has been stimulated by
the prediction of giant diamagnetism [1] or giant paramag-
netism [2] and by the observation of mesoscopic currents
in pure metallic nanostructures [3]. It is also worth men-
tioning the experimental study of the magnetoresistance
of a mesoscopic semi-conducting ring which exhibits os-
cillations versus the flux with a period φ0 [4], where φ0

stands for the flux quantum

φ0 =
hc

e
·

The difficulty in modelling the relatively large mesoscopic
media has led many authors to consider smaller sys-
tems [5–9] with a limited number of electrons, the role
of the various physical quantities being then more easily
followed and grasped. In the present study, a 6-electron
octahedron with one s orbital on each site has been
observed and an accurate Hubbard Hamiltonian diago-
nalisation performed. The magnetic flux and the electron-
electron interaction have been taken into account simulta-
neously. Such calculations have two applications, the first
one being straightforward and giving the octahedron clus-
ter behaviour versus the magnetic field (discussion of the
φ-value can be seen below). A further purpose of our ex-
act diagonalisation is to examine the effect of electronic
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correlation on permanent current. Such calculations have
been made on small rings where the introduction of elec-
tronic interaction induces an antiferromagnetic instabil-
ity [5]. Similar results on the electron configuration in ag-
gregates threaded by a magnetic flux have been recently
obtained. For example, the stability of charge density wave
in a ring is studied in reference [6] by a spinless fermion
model. One of the interests of the geometric structure (oc-
tahedron) studied here lies in the fact that it can be con-
sidered as a method shift from a 2 dimension mesoscopic
system to a 3D one.

Most of the studies mentioned above have been cal-
culated here for the non magnetic (3↑, 3↓) configuration.
Roughly speaking, as will be seen below by the study of
(4↑, 2↓) and (5↑, 1↓) configurations, the (3↑, 3↓) configu-
ration is the most stable in the range of φ values available
experimentally (φ < 10−4) (larger φ might be achieved
nearby a vortex in a superconductor).

For larger φ values, the magnetic configurations be-
come more stable due to the Zeeman effect. In this large
field region only (3↑, 3↓) configuration has been focussed
upon because this kind of study gives sheds some light on
the effects of electronic correlation on permanent current
in mesoscopic system, where φ/φ0 could be 1. Hence our
study of such a system for large φ values deals with the
evolution of such physical quantities, and, as is tradition-
ally the case, only the (3↑, 3↓) configuration [7] have been
analysed here.

In our calculations three different directions (see
Fig. 1) of the magnetic field have also been consid-
ered. One of our main results is the occurrence of an
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Fig. 1. The geometry of the clus-
ter and the 3 studied magnetic
field direction called 1, 2 and 3.

antiferromagnetic order in the atoms of the square per-
pendicular to the field, for an interatomic repulsion energy
U > Uc(φ) where φ stands for the magnetic flux across the
square. Surprisingly enough, the Uc(φ) function exhibits
φ-region where Uc is large (∼= 8 eV) as well as other φ-
regions where Uc is smaller (∼= 3.4 eV). As will be seen,
these results are connected with two different types of an-
tiferromagnetic transition.

2 The model

Matter magnetism has been intensively studied with the
Hubbard Hamiltonian, chiefly for transition metal and
cluster. The one band Hubbard Hamiltonian reads as:

H = −
∑
〈ij〉
σ

tc+iσcjσ + U
∑
i

ni↑ni↓. (1)

The first term is the contribution due to electron hop-
ping between nearest neighbour lattice sites. c+iσ(cjσ) are
the creation(annihilation) electron operators on site i with
spin σ. The on-site interaction between electrons is de-
scribed by the second term. For small clusters, an accurate
solution can be reached through a numerical approach (i.e.
exact diagonalisation (ED)) [8–10]. Such a procedure has
been used by Pastor, Hirsch and Muschlegel [8] to inves-
tigate the effect of electron correlation on magnetism and
the structure of small cluster as well as to supply informa-
tion on the ground state and thermodynamic properties
(specific heat...).

The presence of a magnetic field is taken into account
within the London approximation [11], i.e. the molecular
orbitals are a linear combination of gauge invariant atomic
orbitals ϕj

ϕj = exp
(
− ie
~c

A · r
)
φj (2)

where φj stands for the orbital centred on the atom j, A,
the vector potential at point r. The Hamiltonian is then
accurately diagonalised in the complete 6-electron deter-
minant basis. In the (3↑, 3↓) case, the basis dimension is
400, while in the (4↑, 2↓) and (5↑, 1↓) configurations, it is
225 and 36 respectively.

Besides the various states energies, current J is inves-
tigated in each bond:

Jij = − e

2m

∫
dr(ϕiPϕj + (Pϕi)∗ϕj)

Fig. 2. One-electron energies E1−6(eV) of an octahedron in
a magnetic field perpendicular to the basis versus the flux
(x = φ/8φ0).

where P = −i~∇+ eA/C.
The spin distribution in the molecule is obtained by

calculating the spin-spin correlation function:

Cµν(j) =
1
4
〈j|(nµ↑ − nµ↓)(nν↑ − nν↓|〉 (3)

where µ and ν denote sites, |j〉, an eigenstate.
In the various figures we let |t| = 1 eV. It is to be no-

ticed that as our basis consists of s functions, the Zeeman
contribution due to Lz is also zero.

Section 3 is not yet devoted to the results. Indeed, it
has been deemed necessary, for a better understanding of
the paper to study the effect of the magnetic flux and the
electron-electron interaction separately. In the subsequent
sections, the results are given and some conclusions drawn.

3 Separate study of the flux
and of the electron repulsion effects

In this section, only the (3↑, 3↓) configuration and field
direction 1 (see Fig. 2) are focussed upon.

Let us first consider what happens when φ varies at
U = 0. The one-electron energy levels are plotted versus
the flux (in fact, versus x = φ/8φ0), in the case when the
magnetic field is along direction 1 which is perpendicular
to the base built up with four atoms (Fig. 2). At x = 0,
there are only 3 different levels (one non degenerate level
at −4|t|, a 3-degenerate level at E = 0 and a 2-degenerate
level at E = 2|t|). The magnetic field removing the level
degeneracy, let us label the six one-electron levels E1 to
E6, from the most stable to the less (for x ∼= 0). Level
E1 is always the fundamental level; as for the other levels,
crossings occur. Let us pay attention to the wave function.
Levels E1 and E6 have contributions from all the cluster
atoms; levels E2, E4, E5 have only from the 4 atoms of
octahedron square, as for level E3 (E3 = 0 for any x), only
the off square atoms contribute.
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Fig. 3. The current in the bond between two atoms of the
square versus the flux (x = φ/8φ0) associated to one-energy
levels: the lowest one E1 (—), the highest one E6 (- - -).

Fig. 4. Energy level distribution of the (3↑, 3↓) configuration
versus the electronic correlation term U for x = φ/8φ0 = 0.

The calculations show the occurrence of 2 cases (i)
for levels E1, E2, E4, E5, E6 the presence of a current
only between two atoms of the square, (ii) for level E3,
the absence of current (this is the reason why the level is
flux independent). The currents in states E1 and E6 are
reported in Figure 3 for a magnetic field perpendicular to
the base.

The level energy distribution versus U in the φ = 0
case is given in Figure 4. As U increases: 4 bands appear,
corresponding to states with 0, 1, 2, 3 doubly-occupied
sites. The band separation with 0 and 1 doubly-occupied
sites occurs at U ∼= 6 eV, that between 1 and 2 doubly
occupied sites at U = 11 eV and between 2 and 3 doubly
occupied sites, at U = 6 eV. For the states with 0 and
3 doubly occupied sites, the bands are narrow, this being
due to the fact that there is no direct hopping between
configurations. As soon as the band with no doubly oc-
cupied sites is clearly separated from the others, i.e. for
about U > 6 eV, the levels in the band can be described

by the Heisenberg Hamiltonian, with an exchange energy
J = 4t2/U . This accounts for the fact that its width de-
creases as U increases. On the contrary, the energy levels
in the second and third bands (with 1 or 2 doubly occu-
pied sites) are mainly governed by the hopping term t. As
a consequence their width (∼ 10t = 10 eV) is almost U
independent.

4 Comparison of the (3↑, 3↓) and (4↑, 2↓)
configurations for the three magnetic field
directions

The ground state energy of the (3↑, 3↓) configuration
versus φ is given in Figure 5a for various U values and
also for different magnetic field directions (see Fig. 5b).
Two interesting features will be discussed: the energy lin-
ear stabilisation for small φ values, and the presence of
cusps for some particular φ values.

However, before dealing with these aspects, let us first
examine the behaviour versus φ of another electronic con-
figuration (4↑, 2↓), which has a Zeeman contribution. In
Figure 5c, the energies of the (3↑, 3↓) and (4↑, 2↓) states
are reported for U = 0, 1, 2, 3 eV at low φ (φ < 0.005,
φ-range including the experimentally available B values).
For U = 0 with a magnetic field perpendicular to the octa-
hedron base, state (4↑, 2↓) is slightly more stable, whereas
for B inferior to 10 T, the energy difference is only less
than a few 10−3 eV. For U 6= 0 eV, U = 1, 2, 3 eV re-
spectively, configuration (3↑, 3↓) is the most stable, up to
a critical field

Bc(U) = 16 T, 63 T, 141 T for field direction 1
Bc(U) = 21 T, 93 T, 201 T for field direction 2
Bc(U) = 53 T, 200 T, 405 T for field direction 3

(the various directions are reported in Fig. 1). These re-
sults show that for the experimentally available φ range,
and U 6= 0 the (3↑, 3↓) configuration is the ground state.

For the (5↑, 1↓) configuration, the starting energy for
φ = 0 is much larger than the (4↑, 2↓) one. Though the
Zeeman stabilisation is more rapid, it is assumed that the
Bc(U) values where the crossing with the (3↑, 3↓) states
occurs, are much larger. By calculation for direction 1 we
obtainBc(U) = 1008 T, 2410 T, 3411 T, 3890 T for U = 0,
1, 2, 3 eV, respectively.

Let us now analyse the energy linear stabilisation for
the (3↑, 3↓) configuration. There seems to be a posi-
tive magnetic dipole (paramagnetism) independent of φ.
This result sounds somewhat surprising since, for benzene,
which is a 6-site 3↑3↓ system too, the magnetic dipole
is opposite to the field (diamagnetism) and linearly de-
pend on φ. Our results can be accounted for by the fact
that two of the occupied levels (E2 and E3) come from a
triply degenerate level at φ = 0; as can be seen in Fig-
ure 2, the E2 level is linearly stabilised with φ. As the two
other levels vary less rapidly with φ (E3 being constant
and E1 quadratically destabilised), the E2 behaviour is
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(a) (b)

(c)

Fig. 5. (a) Magnetic energy versus the flux (x = φ/8φ0) of an octahedron cluster in the (3↑, 3↓) electronic configuration for
different electronic correlation term U (the magnetic field direction is 1). U = 0 eV(—), U = 3 eV (- - -), U = 6 eV (· · ·).
(b) Magnetic energy versus the flux (x = φ/8φ0) of an octahedron cluster in the (3↑, 3↓) electronic configuration for different
magnetic field directions (direction 1: ♦, direction 2: O, direction 3: +) for the lower set of curves U = 0 eV and for the upper
one U = 3 eV (see Fig. 1 for the field direction). (c) Magnetic energy versus the flux (x = φ/8φ0) of an octahedron cluster in the
electronic configurations ((3↑, 3↓): ◦ and (4↑, 2↓): +) for different electronic correlations term U (the magnetic field direction
is 1).

dominant and gives the global stabilisation observed. Such
a behaviour has also been noticed in other works, when
highly degenerate levels appear for φ = 0. This is the case
when the aggregate is modelled by a sphere with infinite
walls [12] or when rings are considered [4]. We also ob-
serve that, as U increases, the magnetic dipole decreases.
This fact can be grasped by a self-consistent Hartree-Fock
calculation (see Fig. 6), which gives the evolution with U
of the Ei(φ) curves given in Figure 2 for U = 0. This
calculation shows that the E2 level stabilisation for small
φ values is less rapid when U increases, which leads to a
smaller magnetic dipole.

5 The presence of cusps in the (3↑, 3↓)
configuration in the large φ range

For U = 0, the presence of cusps at x = 0.25; 0.5; 0.75
can be noticed in Figure 5a. A look at Figure 2 reveals
that they arise from level crossings which cause changes
in the occupation of the one-electron levels. For example,
for x < 0.25, the E3 level is occupied, while for x > 0.25
it is empty and level E5 is occupied. Similar changes also
occur at x = 0.5 and 0.75. As can be seen in Figure 5a, the
cusp structure is different at U = 3 eV and 6 eV. To grasp
this fact, reference can again be made to the self-consistent
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Fig. 6. One electron Hartree-Fock energies E1 to E6(eV) of
an octahedron with the (3↑, 3↓) electronic configuration ver-
sus the flux (x = φ/8φ0) for different electronic correlation
terms U . (—) U = 0 eV, (· · ·) U = 3 eV (the magnetic field
direction is 1).

Hartree-Fock calculation (Fig. 6). When U increases, the
slopes of all the Ei curves decrease in absolute value. This
accounts for the fact that the cusps position may be dis-
placed and the difference between the slopes on the two
sides of the cusp is less significant.

Some physical quantities can be derived from the
energy calculation. Thus, one challenge of mesoscopic
physics consists in measuring and calculating the per-
sistent current (I = −(1/2π)(∂E/∂φ)) in mesoscopic
device. The discrepancy between measured and experi-
mental persistent current has been interpreted due to the
electronic correlation. Our previous calculations have en-
abled us to derive the persistent current in the octahedron
cluster without disorder versus the flux and the correlation
has the expected tendency of decreasing the permanent
current and of smoothing the curve (Fig. 7).

6 The antiferromagnetic transition
in the (3↑, 3↓) configuration

Let us turn our attention to some properties of the (3↑, 3↓)
state. If we dilate the φ-axis scale and examine the E(φ)
curves for U > 6 eV, we observe an interesting behaviour
reported in Figure 8. For U > Uc ∼ 6.01 eV, the E(φ)
curve begins by a plateau, i.e. it presents a zero slope
at the origin. It is to be noticed that the φ extension of
the zero slope region increases with U . Similarly, one may
introduce the Uc(φ) critical energy, reported in Figure 9,
which gives the lowest U value so that the E(φ) curve
has a zero slope at point φ. We can then see that the
Uc(φ) function is a two-valued function with φ-regions at
Uc ∼ 8 eV and others at Uc ∼ 3.4 eV.

In order to account for our results, we have calculated
the charge densities on the sites and the spin-spin cor-
relation coefficients given by formula (3). Such calcula-
tions show that, in the φ-regions where Uc is large and

Fig. 7. Permanent current I (a.u.) versus the flux (x = φ/8φ0)
of an octahedron cluster in the (3↑, 3↓) electronic configura-
tion for different electronic correlation term U . (—) U = 0 eV,
(- - -) U = 3 eV, (· · ·) U = 6 eV (the magnetic field direc-
tion is 1).

Fig. 8. Evolution of E(eV) and of the slope dE/dx (x =
φ/8φ0 = 0) of an octahedron cluster in the (3↑, 3↓) electronic
configuration versus the flux (x = φ/8φ0) for different elec-
tronic correlation term U (from U = 5.8 to 6.4 eV with an
increase of 0.2 eV) (the magnetic field direction is 1).

for U < Uc(φ), there is a charge excitation in the system
with a density larger than 1 on the off square atoms (the
average population on the square atoms being less than
one) and there is no magnetic order for the electrons on
the square atoms. However, when U > Uc(φ), the charge
excitation disappears and an antiferromagnetic order ap-
pears on the square atoms. Thus, the occurrence of the
zero slope E(φ) zone is linked to the presence of an anti-
ferromagnetic order.

In the φ-range where Uc is small (Uc
∼= 3.4 eV), the

system behaves differently with U . No charge excitation
occurs for U smaller than Uc. The lack of charge excita-
tion is certainly due to the fact that the one-electron en-
ergy levels are closer (Fig. 2), leading to a larger electron
delocalisation through the molecule. As a consequence,
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Fig. 9. The critical electronic correlation term Uc(eV) (associ-
ated to the non magnetic/antiferromagnetic transition) versus
the flux (x = φ/8φ0) of an octahedron cluster in the (3↑, 3↓)
electronic configuration (the magnetic field direction is 1).

the charge excitation is less stable in this φ region in com-
parison with the φ ∼ 0 region and the antiferromagnetic
order appears more easily.

7 The Gutzwiller method

An accurate calculation method based on an accurate
diagonalisation is possible only for small clusters. For
large clusters or bulks, variational or perturbation meth-
ods are available. One of these methods is the variational
Gutzwiller method [13], which has been applied inten-
sively for high Tc superconductor material and clusters
like fullerene [14]. From the Kotliar and Ruckenstein work,
the Gutzwiller framework is equivalent to the saddle point
of the slave boson approach. The Gutzwiller method pro-
vides accurate results on the ground state. In the classical
variational Gutzwiller method, a trial variational wave-
function Ψ is obtained from the groundstate wave function
Ψ0 of the unperturbed system (i.e. U = 0) by applying the
Gutzwiller operator (thus Ψ is guessed in order to decrease
the contribution of the doubly occupied states):

Ψ =
∏
i

[1− (1− g)ni↑ni↓]Ψ0 (4)

here g is a variational parameter that has to be determined
so as to minimise the energy.

Let us investigate the diamagnetic energy of the
(3↑, 3↓) configuration as a function of the flux to com-
pare the Gutzwiller results to the exact calculation ones
for U = 3 eV (Fig. 10). The agreement is quite good except
if x ∼= 0.25 or x ∼= 0.75, where we have noticed curvature
change. This discrepancy is linked with the level crossing
occurring at U = 0 eV but which disappears for larger U .
In fact to better adapt the Gutzwiller method to our case,
it is more appropriate to apply the Gutzwiller operator,
not on Ψ0 (the ground state) but on the state β1Ψ0 +β2Ψ1

where Ψ1 is the first excited state. β1 and β2 are obtained
by minimising the Gutzwiller energy. The calculation is

Fig. 10. Energy versus the flux (x = φ/8φ0) of an octahe-
dron cluster in the (3↑, 3↓) electronic configuration with an
electronic correlation term U = 3 eV. Exact diagonalisation
(—), Classical Gutzwiller (◦), modified Gutzwiller (∗).

longer. Verification has been made for some points (in the
x ∼= 0.25 range (or x ∼= 0.75 range) that the agreement
turns out to be very satisfactory (Fig. 10).

8 Conclusion
The exact diagonalisation applied to the octahedron
molecule has allowed the investigation of the electronic
energy dependence versus the flux and shows surprising
magnetic transition evolution with the flux, which cannot
be obtained through other techniques. We have noticed
a linear stabilisation of the energy at low magnetic field
for various magnetic field directions, which would be in-
teresting to further investigate. Moreover, particularly for
small φ value, the transition from antiferromagnetism to
paramagnetism, in elements where U > Uc, could be ex-
perimentally observed.
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